您的位置:群走网>教学资源>说课稿>高二数学说课稿
高二数学说课稿
更新时间:2024-02-18 07:02:57
  • 相关推荐
高二数学说课稿

  作为一名优秀的教育工作者,常常要根据教学需要编写说课稿,借助说课稿可以更好地提高教师理论素养和驾驭教材的能力。怎样写说课稿才更能起到其作用呢?下面是小编整理的高二数学说课稿,希望能够帮助到大家。

高二数学说课稿1

  《等比数列的前n项和》是数列这一章中的一个重要内容,它不仅在现实生活中有着广泛的实际应用,如储蓄、分期付款的有关计算等等,而且公式推导过程中所渗透的类比、化归、分类讨论、整体变换和方程等思想方法,都是学生今后学习和工作中必备的数学素养.

  2.从学生认知角度看。

  从学生的思维特点看,很容易把本节内容与等差数列前n项和从公式的形成、特点等方面进行类比,这是积极因素,应因势利导.不利因素是:本节公式的推导与等差数列前n项和公式的推导有着本质的不同,这对学生的思维是一个突破,另外,对于q=1这一特殊情况,学生往往容易忽视,尤其是在后面使用的过程中容易出错.

  3.学情分析。

  教学对象是刚进入高中的学生,虽然具有一定的分析问题和解决问题的能力,逻辑思维能力也初步形成,但由于年龄的原因,思维尽管活跃、敏捷,却缺乏冷静、深刻,因此片面、不严谨.

  4.重点、难点。

  教学重点:公式的推导、公式的特点和公式的运用.

  教学难点:公式的推导方法和公式的灵活运用.

  公式推导所使用的“错位相减法”是高中数学数列求和方法中最常用的方法之一,它蕴含了重要的数学思想,所以既是重点也是难点.

  知识与技能目标:

  理解并掌握等比数列前n项和公式的推导过程、公式的特点,在此基础上能初步应用公式解决与之有关的问题.

  过程与方法目标:

  通过对公式推导方法的探索与发现,向学生渗透特殊到一般、类比与转化、分类讨论等数学思想,培养学生观察、比较、抽象、概括等逻辑思维能力和逆向思维的能力.

  情感与态度价值观:

  通过对公式推导方法的探索与发现,优化学生的思维品质,渗透事物之间等价转化和理论联系实际的辩证唯物主义观点.

  学生是认知的主体,设计教学过程必须遵循学生的认知规律,尽可能地让学生去经历知识的形成与发展过程,结合本节课的特点,我设计了如下的教学过程:

  1.创设情境,提出问题。

  设计意图:设计这个情境目的是在引入课题的同时激发学生的兴趣,调动学习的积极性.故事内容紧扣本节课的主题与重点.

  此时我问:同学们,你们知道西萨要的是多少粒小麦吗?引导学生写出麦粒总数.带着这样的问题,学生会动手算了起来,他们想到用计算器依次算出各项的值,然后再求和.这时我对他们的这种思路给予肯定.

  设计意图:在实际教学中,由于受课堂时间限制,教师舍不得花时间让学生去做所谓的“无用功”,急急忙忙地抛出“错位相减法”,这样做有悖学生的认知规律:求和就想到相加,这是合乎逻辑顺理成章的事,教师为什么不相加而马上相减呢?在整个教学关键处学生难以转过弯来,因而在教学中应舍得花时间营造知识形成过程的氛围,突破学生学习的障碍.同时,形成繁难的情境激起了学生的求知欲,迫使学生急于寻求解决问题的新方法,为后面的教学埋下伏笔.

  2.师生互动,探究问题。

  探讨1:,记为(1)式,注意观察每一项的特征,有何联系?(学生会发现,后一项都是前一项的2倍)。

  设计意图:留出时间让学生充分地比较,等比数列前n项和的公式推导关键是变“加”为“减”,在教师看来这是“天经地义”的,但在学生看来却是“不可思议”的.,因此教学中应着力在这儿做文章,从而抓住培养学生的辩证思维能力的良好契机.

  设计意图:经过繁难的计算之苦后,突然发现上述解法,不禁惊呼:真是太简洁了!让学生在探索过程中,充分感受到成功的情感体验,从而增强学习数学的兴趣和学好数学的信心.

  3.类比联想,解决问题。

  这时我再顺势引导学生将结论一般化,这里,让学生自主完成,并喊一名学生上黑板,然后对个别学生进行指导.

  设计意图:在教师的指导下,让学生从特殊到一般,从已知到未知,步步深入,让学生自己探究公式,从而体验到学习的愉快和成就感.

  对不对?这里的q能不能等于1?等比数列中的公比能不能为1?q=1时是什么数列?此时sn=?(这里引导学生对q进行分类讨论,得出公式,同时为后面的例题教学打下基础.)。

  再次追问:结合等比数列的通项公式an=a1qn-1,如何把sn用a1、an、q表示出来?(引导学生得出公式的另一形式)。

  设计意图:通过反问精讲,一方面使学生加深对知识的认识,完善知识结构,另一方面使学生由简单地模仿和接受,变为对知识的主动认识,从而进一步提高分析、类比和综合的能力.这一环节非常重要,尽管时间有时比较少,甚至仅仅几句话,然而却有画龙点睛之妙用.

  4.讨论交流,延伸拓展。

高二数学说课稿2

  一、教材背景分析。

  1.教材的地位和作用。

  《“杨辉三角”与二项式系数的性质》是全日制普通高级中学教科书人教a版选修2-3第1章第3节第2课时.教科书将二项式系数性质的讨论与“杨辉三角”结合起来,是因为“杨辉三角”蕴含了丰富的内容,由它可以直观看出二项式系数的性质,“杨辉三角”是我国古代数学重要成就之一,显示了我国古代人民的卓越智慧和才能,应抓住这一题材,对学生进行爱国主义教育,激励学生的民族自豪感.

  本节内容以前面学习的二项式定理为基础,由于二项式系数组成的数列就是一个离散函数,引导学生从函数的角度研究二项式系数的性质,便于建立知识的前后联系,使学生体会用函数知识研究问题的方法,可以画出它的图象,利用几何直观、数形结合、特殊到一般的数学思想方法进行思考,这对发现规律,形成证明思路等都有好处.这一过程不仅有利于培养学生的思维能力、理性精神和实践能力,也有利于学生理解本节课的核心数学知识,发展其数学应用意识.

  研究二项式系数这组特定的组合数的性质,对巩固二项式定理,建立相关知识之间的联系,进一步认识组合数、进行组合数的计算和变形都有重要的作用,对后续学习微分方程等也具有重要地位.

  2.学情分析。

  知识结构:学生已学习两个计数原理和二项式定理,再让学生课前探究“杨辉三角”包含的规律,结合“杨辉三角”,并从函数的角度研究二项式系数的性质.

  心理特征:高二的学生已经具备了一定的分析、探究问题的能力,恰时恰点的问题引导就能建立知识之间的相互联系,解决相关问题.

  3.教学重点与难点。

  重点:体会用函数知识研究问题的方法,理解二项式系数的性质.

  难点:结合函数图象,理解增减性与最大值时,根据n的奇偶性确定相应的分界点;利用赋值法证明二项式系数的性质.

  关键:函数思想的渗透.

  1.通过课前组织学生开展“了解杨辉三角、探究与发现杨辉三角包含的规律”的学习活动,让学生感受我国古代数学成就及其数学美,激发学生的民族自豪感.

  2.通过学生从函数的角度研究二项式系数的性质,建立知识的前后联系,体会用函数知识研究问题的方法,培养学生的观察能力和归纳推理能力.

  3.通过体验“发现规律、寻找联系、探究证明、性质运用”的学习过程,使学生掌握二项式系数的一些性质,体会应用数形结合、特殊到一般进行归纳、赋值法等重要数学思想方法解决问题的“再创造”过程.

  4.通过恰时恰点的问题引入、引申,采用学生课前自主探究、课上合作探究、课下延伸探究的学习方式,培养学生问题意识,提高学生思维能力,孕育学生创新精神,激发学生探索、研究我国古代数学的热情.

  教法:问题引导、合作探究.。

  学法:从课前探究和课上展示中感知规律,结合“杨辉三角”和函数图象性质领悟性质,在探究证明性质中理解知识,螺旋上升地学习核心数学知识和渗透重要数学思想.

  1.展示成果话杨辉。

  课前开展学习活动:了解“杨辉三角”的历史背景、地位和作用,探究与发现“杨辉三角”包含的规律.

  (1)学生从不同的角度畅谈“杨辉三角”,对它有何了解及认识.

  (2)各小组展示探究与发现的成果——“杨辉三角”包含的一些规律.

  【设计意图】引导学生开展课外学习,了解“杨辉三角”,探究与发现“杨辉三角”包含的规律,弘扬我国古代数学文化;展示探究与发现的杨辉三角的规律,为学习二项式系数的性质埋下伏笔.

  2.感知规律悟性质。

  通过课外学习,同学们观察发现了杨辉三角的一些规律,并且知道杨辉三角的第行就是展开式的二项式系数,展开式的二项式系数具有杨辉三角同行中的规律——对称性和增减性与最大值.

  【设计意图】寻找二项式系数与杨辉三角的关系,从而让学生理解二项式系数具有杨辉三角同行中的规律.

  3.联系旧知探新知。

  【问题提出】怎样证明展开式的二项式系数具有对称性和增减性与最大值呢?

  (2)画出和7时函数的图象,并观察分析他们是否具有对称性和增减性与最大值.

  (3)结合杨辉三角和所画函数图象说明或证明二项式系数的性质.

  对称性:与首末两端“等距离”的两个二项式系数相等..。

  【设计意图】教师引导学生用函数思想探究二项式系数的性质,学生画图并观察分析图象性质;运用特殊到一般、数形结合的数学思想归纳二项式系数的性质,升华认识;通过分组讨论、自主探究、合作交流,说明或证明二项式系数的对称性和增减性与最大值,提高学生合作意识.

  4.合作交流议方法。

  【继续探究】问题:展开式的各二项式系数的和是多少?

  探究:(1)计算展开式的二项式系数的和(=1,2,3,4,5,6).

  (2)猜想展开式的二项式系数的和.

  (3)怎样证明你猜想的结论成立?

  赋值法:已知,令,则.。

  这就是说,的展开式的各个二项式系数的和等于.。

  元集合子集的个数(两个计数原理).

  分类计数原理:

  分步计数原理:个2相乘,即.。

  所以.。

  【问题拓展】你能求吗?

  在展开式中,令,则得,即,所以,在的展开式中,奇数项的'二项式系数的和等于偶数项的二项式系数的和.

  【设计意图】通过学生归纳猜想各二项式系数的和,引导学生验证猜想结论是否正确;同时为了突破利用赋值法证明二项式系数性质的难点,引导学生从模型化的角度出发,多角度的分析问题、探究问题、解决问题,将学生思维推向高潮,既加深学生对前后知识的内在联系的理解,又从深度和广度上让学生感受数学知识的串联和呼应.

  5.反馈升华拨思路。

  练1.的展开式中的第四项和第八项的二项式系数相等,则等于.

  练2.的展开式中前项的二项式系数逐渐增大,后半部分逐渐减小,二项式系数取得最大值的是第项.

  练3.已知,求:

  (1);(2).

  6.悬念小结再求索。

  【课堂延伸】今天同学们展示了一些杨辉三角的规律,但是作为我国古代数学重要成就之一的杨辉三角还有更多有趣的规律,相信大家一定有极高的热情和严谨的态度去探究与发现杨辉三角的奥妙之处.

  【课外活动】(研究性学习)。

  活动主题:杨辉三角中的奥妙.

  活动目标:探究与发现杨辉三角中的更多奥妙.

  活动方案步骤:查阅资料,收集信息;独立思考,发现规律,猜想证明;合作探究,小组讨论,形成初步结论;与指导老师及其他小组成员交流展示;撰写研究性学习报告.

  【设计意图】通过课堂的整理、总结与反思,使学生更好的掌握主干知识,体会探究过程中渗透的数学思想方法,再次感受我国古代数学成就,激励自己努力学习.“杨辉三角”还有很多有趣的规律,让学生带着问题走进课堂,带着疑问离开教室,培养学生自主研修的习惯,提高学生探究问题、解决问题的能力.设计研究性学习活动,诱发学生创造性的想象和推理.同时教会学生如何开展研究性学习.

  导数是微积分的核心概念之一,它为研究函数提供了有效的方法。在前面几节课里学生对导数的概念已经有了充分的认识,本节课教材从形的角度即割线入手,用形象直观的“逼近”方法定义了切线,获得导数的几何意义,更有利于学生理解导数概念的本质内涵。这节课可以利用几何画板进行动画演示,让学生通过观察、思考、发现、思维、运用形成完整概念。通过本节的学习,可以帮助学生更好的体会导数是研究函数的单调性、变化快慢等性质最有效的工具,是本章的关键内容。

  2、教学的重点、难点、关键。

  教学重点:导数的几何意义、切线方程的求法以及“数形结合,逼近”的思想方法。

  教学难点:理解导数的几何意义的本质内涵。

  1)从割线到切线的过程中采用的逼近方法;

  2)理解导数的概念,将多方面的意义联系起来,例如,导数反映了函数f(x)在点x附近的变化快慢,导数是曲线上某点切线的斜率,等等。

  根据新课程标准的要求、学生的认知水平,确定教学目标如下:

  1、知识与技能:

  通过实验探求理解导数的几何意义,理解曲线在一点的切线的概念,会求简单函数在某点的切线方程。

  2、过程与方法:

  经历切线定义的形成过程,培养学生分析、抽象、概括等思维能力;体会导数的思想及内涵,完善对切线的认识和理解。

  通过逼近、数形结合思想的具体运用,使学生达到思维方式的迁移,了解科学的思维方法。

  3、情感态度与价值观:

  对于直线来说它的导数就是它的斜率,学生会很自然的思考导数在函数图像上是不是有很特殊的几何意义。而且刚刚学过了圆锥曲线,学生对曲线的切线的概念也有了一些认识,基于以上学情分析,我确定下列教法:

  学法:为了发挥学生的主观能动性,提高学生的综合能力,本节课采取了自主、合作、探究的学习方法。

  教具:几何画板、幻灯片。

高二数学说课稿3

  1.教材分析:

  椭圆及其标准方程是圆锥曲线的基础,它的学习方法对整个这一章具有导向和引领作用,直接影响其他圆锥曲线的学习。是后继学习的基础和范示。同时,也是求曲线方程的深化和巩固。

  2.教学分析:

  椭圆及其标准方程是培养学生观察、分析、发现、概括、推理和探索能力的极好素材。本节课通过创设情景、动手操作、总结归纳,应用提升等探究性活动,培养学生的数学创新精神和实践能力,使学生掌握坐标法的规律,掌握数学学科研究的基本过程与方法。

  3.学生分析:

  高中二年级学生正值身心发展的鼎盛时期,思维活跃,又有了相应知识基础,所以他们乐于探索、敢于探究。但高中生的逻辑思维能力尚属经验型,运算能力不是很强,有待于训练。

  基于上述分析,我采取的是教学方法是“问题诱导--启发讨论--探索结果”以及“直观观察--归纳抽象--总结规律”的一种研究性教学方法,注重“引、思、探、练”的结合。

  引导学生学习方式发生转变,采用激发兴趣、主动参与、积极体验、自主探究的学习,形成师生互动的教学氛围。

  我设定的教学重点是:椭圆定义的理解及标准方程的推导。

  教学难点是:标准方程的推导。

  二、目标说明:

  根据数学教学大纲要求确立“三位一体”的教学目标。

  1.知识与技能目标:

  理解椭圆定义、掌握标准方程及其推导。

  2.过程与方法目标:注重数形结合,掌握解析法研究几何问题的一般方法,注重探索能力的培养。

  3.情感、态度和价值观目标:

  (1)探究方法激发学生的求知欲,培养浓厚的学习兴趣。

  (2)进行数学美育的渗透,用哲学的观点指导学习。

  三、过程说明:

  依据“一个为本,四个调整”的新的教学理念和上述教学目标设计教学过程。“以学生发展为本,新型的师生关系、新型的教学目标、新型的教学方式、新型的呈现方式”体现如下:

  (一)对教材的重组与拓展:根据教学目标,选择教学内容,遵循拓展、开放、综合的原则。教材中对椭圆定义尽管很严密,但不够直观,所以增加了影音文件:海尔波谱彗星的运行轨道图,最后,让学生交流用几何画板画椭圆以及5个探究性问题,作为对教材的拓展。

  (二)在教学过程中的体现:

  1.新课导入:以影音文件“海尔波谱彗星的运行轨道示意图”导入,呈现方式具有新异性,激发学习兴趣;画板画图,增强动手操作意识,直观形象从而引入椭圆定义,进而研究椭圆标准方程。

  2.新课呈现:

  学生通过观看文件、动手操作,然后自己总结椭圆定义,符合从感性上升为理性的认知规律,而且提升了抽象概括的能力。然后,进行推导椭圆的标准方程,培养运算能力,进而探讨标准方程的特点。教师作为热烈讨论的平等氛围中的引导者,鼓励学生大胆探究、勇于创新,积极谈论和参与体验,培养严谨的逻辑思维,抽象概括的'能力,渗透数学美学教育,掌握数形结合的重要数学思想,最后的几个探究性问题鼓励学生积极探索,敢于探究,转变学习方式。

  3.巩固应用。

  根据定义及其标准方程,设计三组九道练习题,引导学生联系、思考、讨论、反馈、矫正,增强运用能力。

  4.继续探究:

  (1)观察椭圆形状,不同原因在哪里;。

  (2)改变绳长或变换焦点位置再画椭圆,发现关系;。

  (3)用几何画板交流画图,观察形状变化;。

  (4)如何描述形状变化?

  引导学生探究欲望,开展研究性学习。

  四、评价说明。

  本节课的学生评价坚持形成性评价和阶段性评价相结合的原则。

  (一)形成性评价:从操作能力、概括能力、学习兴趣、交流合作、情绪情感方面对学习效果进行过程评价。对出现问题的学生,教师指出其可取之处并耐心引导,这样有助于培养他们勇于面对挫折,持之以恒地科学探索精神;当学生做的精彩有创新,教师给予学生充分的鼓励,从而进一步激发学生创造的潜能,提高他们的创新能力。

  (二)阶段性评价:从单元测试、期中测试等方面对学生的阶段性学习成果进行测试。评价结果以每次测试成绩和学生平时的综合表现为依据。同时要进行学生的自我评价以及教师对行动的综合性评价。

  (三)教师自我反思评价:本课充分体现了“一个为本,四个调整”的新课程理念。

  这节课使用计算机网络技术,展现知识的发生过程,是学生始终处于问题探索研究状态之中,激情引趣。注重数学科学研究方法的掌握,是研究性教学的一次有益尝试。有利于改变学生的学习方式,有利于学生自主探究,有利于学生的实践能力和创新意识的培养。

高二数学说课稿4

  本知识来自于人教版高中数学必修3第一章第二节,着好似一章新知识,该部分知识被安排在五本必修课本中的第三本,处于高中知识的过度阶段。而在上课前,无论是老师还是学生,都会有一些相应的问题,下面两个问题就是两个比较有代表性的问题。

  1、为什么要在数学中教语句?

  2、学语句不上机,是不是纸上谈兵?

  现在我们来好好研究一下这两个问题。首先,学语句是为了算法思想,而基本算法语句是算法思想的直观表现,是程序框图的语言形式,所以学语句是进一步体会算法思想,进一步提高逻辑思维能力,提高思辨能力和实辨能力。(有条件上机的进行实践,没条件上机的进行思辨,在实践中思辨,在思辨中实践,提高学生的学习兴趣,增加学生的实践机会)。所以,学语句不上机,不是纸上谈兵。

  在学习基本算法语句之前(本节课主要讲输入语句、输出语句与赋值语句),学生已在本章知识的第一节学习了算法与程序框图的基本思想与定义,而且该部分与一些初等函数知识相挂钩,并且相互结合学习。在此之前,学生在必修1已经对初等函数知识有了相应的学习与了解。

  该部分知识主要采取说教法进行讲授,通过学生所熟悉的生活问题引入课堂,为公式学习创设情境,拉近数学与现实之间的距离,激发学生的求知欲,调动学生主体参与的积极性。

  1、知识目标:

  (1)初步了解基本算法语句中的输入、输出、赋值语句;。

  (2)理解算法语句是将算法的各种控制结构变成计算机能够理解的程序语言;。

  2、情感目标;。

  (1)通过对三种语句的实现,发展有条理思考,表达能力,逻辑思维能力;。

  (2)学习算法语句,帮助学生利用计算机软件实现算法,活跃思维,提高数学素质。

  重点:输入语句、输出语句、赋值语句的基本结构特点及用法;。

  难点:输入语句、输出语句、赋值语句的意义及作用。

  例1、引入生活中的例子:“让一个学生去办公室帮我去我的办公室泡一杯茶”,通过这个例子来听到学生,让他们了解其实计算机与人的办事思维是一样的。在这个过程中,首先我会告诉学生:办公室的位置、办公桌的地点、茶叶、茶杯等信息,即将这些信息输入到学生的大脑(该过程等价于计算机的输入过程);然后学生开始行动,将茶叶、水放入茶杯(该过程等价于计算机的赋值过程);最后学生将完成的茶水给我(该过程等价于计算机的输出过程)。

  通过该例子的.引入,使学生对本次课堂所要学习的知识有初步的了解,使他们在接受正式的计算机基本语句之前对该部分知识有一个简单的逻辑思维,从而使他们更容易接受该部分知识,最后达到减轻学习知识难度的目的,也为后面的学习做铺垫。

  例2、用描点法做函数y?x3?3x2?24x?30的图像时,需要求出函数的自变量和函数的一组对应值,编写程序,分别计算出当x??5,?4,?3,?2,?1,0,1,2,3,4,5时的函数值。

  (现在教学生来泡茶)算法分析:

  根据题意,对于每一个输入的自变量的值,都要输出相应的函数值,写出算法步骤如下:第一步,输入一个自变量x的值。(计算机简单算法语句的输入过程,泡茶第一步)第二部,计算y?x3?3x2?24x?30。

  第三部,输出y。(计算机简单算法语句的输出过程,泡茶第三部)。

  下面,结合上节课所学的知识,复习并巩固上节课所学的程序框图,将上面的算法分析用程序框图表示出来。

  显然,这是一个由顺序结构构成的算法,按照程序框图中流程线的方向,引导学生,得出相应的算法语句,最后得出输入语句、输出语句、赋值语句的定义。