- 相关推荐
身为一名人民老师,我们要有很强的课堂教学能力,写教学反思可以快速提升我们的教学能力,那么优秀的教学反思是什么样的呢?以下是小编帮大家整理的八年级数学下册教学反思,仅供参考,大家一起来看看吧。
八年级数学下册教学反思1
《分式的基本性质》是分式一章的重点,这一章教学效果的好坏,将直接影响到整个分式的学习,课本是通过算术中分数的基本性质,用类比的方法给出分式的基本性质,学生接受起来并不感到困难,但是要使学生达到透彻地理解,却并不是一件容易的事。因此我在教学时采用师生共同体会关键字眼在分式概念表述中的重要性和指导练习习题的不可忽视性。
当使用分数的基本性质时,虽然也强调用以同乘(或除)m≠0的数,但在实际应用时,几乎没有用零去乘(或除)的'可能,所以使用性质的这个根本性的限制条件常常被忽略了。而在代数中,m常是一个含有字母的代数式,就有m=0的可能性。所以每当我们应用这个性质时,都应首先考虑一下这个用以同乘(或除)的整式的值是否为零?随时注意在怎样的条件下应用这个性质的。我们在教学中应使学生养成使用分式基本性质的严谨的习惯。
通过教学,学生对分式的基本性质有了一个较好的理解,这就为下面讲分式的变形奠定了良好的基础。整堂课取得了良好的教学效果。不足之处在于对于分数的基本性质与分式的基本性质能进行类比的本质理解不够,作业中仍有部分学生没有考虑分子、分母同乘以或除以的字母是否为0。
八年级数学下册教学反思2
一、教学设计思路:
本节课是《4.2平行四边形的判定2》,前面已经有三个判定定理的学习,本节课只是在原有基础上补充多一个判定定理。从孩子作业反映上来看,孩子们对判定定理的选择与应用做得并非太好,特别是对判定定理的选择上,经常是使用自己较熟悉的一种,结果有时使到整个证明过程呈得繁琐。
因此,本节课的教学环节我做了这样的设计:
第一环节:课前阅读:一方面是复习旧知,另一方面是使学生尽快进入课堂教学;
第二环节,课前小测:五道基础性题目检测学生之前的与上节课所学的知识;
第三环节,定理的选择:一道判断有几个平行四边形的题目,判断过程中让学生选择适当的定理来证明;
第四环节,探索两条对边分别相等的四边形是平行四边形的判定定理;
第五环节,课本上的随堂练习巩固知识点;
第六环节,辨别两个判定定理的易混点:一个是一组对边平行,另一组对边相等,另一个是两条边相等,另外两条边也相等;
第七环节,练习:三道练习题。其中有时间时最后一题进行适当的变式。
二、教学完成情况:
教学任务基本完成,就是最后一环节当中变式题目没有讲,不过那个本来就是多预备的。
三、满意与不足之处:
本节课中虽然说教学任务基本完成。但有些环节中的处理做得不是很好。课前阅读与课前小测方面是比较满意的,能做得多关注差生,尽可能地减少差生面,提高孩子的学习信心。但是,第三环节中定理的选择的练习中,出发点是好,但花费的时间较多,导致新课讲授的时间较少。第四环节探索判定定理时,实验题安排了学生在练习本上写,老师巡视,最后评讲,其实最好是让学生板演;第六环节是找学生板演时应有所挑选,课堂中选了一个基础好与一个基础差的学生,差些的学生主要看着基础好的学生来完成,没太大意义;最后的练习讲评中时间比较不充裕,所以导致讲得比较简单,更多的是引导与提示,没有充分留有时间给孩子思考。另外,方法性的.指导也略显不足。
四、改进措施:
作为一个刚毕业一年的老师,经验性的不足也有一定关系。为了更快地完善自己的教学,近期主要注意以下几个方面:
1、抓好课前的准备。从严做起,重在落实。对学生课前练习本、课本等课堂需要用到的东西都要让学生养成习惯做好准备。
2、对教学设计与时间地分配要做更好的思考,以增强对时间控制地敏感度,更好地分配好每一环节所花的时间。
3、让课堂慢下来,争取让更多的学生消化好课堂新知,理解好知识点与例题。
4、在课堂上放心地让学生去尝试错误,多些让学生自主思考。
5、对学生的学习与做题多些方法性的指导。
八年级数学下册教学反思3
小学已经对平行四边形的性质有一定的了解,对边、对角之间的关系是比较熟悉,无需再进行猜想边与角之间的关系,所以我确认本节的重点是引导学生如何将四边形问题转化为三角形问题,以及利用平行四边形的性质进行推理论证培养学生的合情推理能力、探究问题基本方法渗透。对基本的概念,比如平行四边形,对边,对角,对角线等概念,通过引例结合图形,仅仅是进行了简单的认识,最大限度的实现突出主干。
例题1通过本例巩固平行四边形的性质,复习勾股定理和平行四边形的面积公式;规范学生运用性质进行说理的书写格式;教师讲解或引导过程中注意培养学生解题的'目标意识。
例题2复习平行四边形的定义,平行线的性质等,巩固证明边相等的另一重要方法:等角对等边;
渗透解决问题的常规思路:
思路1:平行四边形---平行四边形的性质---
思路2:观察,猜想图中与,相等的角有哪
些?(寻找中间等量,实现转化目标的)
思路3:假设法,若(结合条件)
与平行四边形ABCD中相一致,假设成立!
环节(四)课堂知识与方法小结,帮助学生梳理知识,整理方法形成知识结构。
环节(五)A组练习比较简单,题型比较常见,覆盖本节基本知识点,要求100%
学生能独立完成。
B组第1题,巩固例题1平行四边形的面积公式,及平行四边形的性质,以及体验假设法探究思路妙处。第2题渗透整体思想,以及体验观察—猜想—验证探究问题的过程:直观感觉图中相等的边与角(为猜想提供依据)猜想,证明猜想。学生在体验中的感受,就会增强学生探究的兴趣,从而形成一种探究的思考方式,能有效的培养学生的创新精神和创新能力,让学生在探究中热爱数学、学好数学.
八年级数学下册教学反思4
通过分数与分式的比较,培养学生良好的类比联想的思维习惯和反思方法;通过分数与分式的类比,向学生渗透矛盾转化的辩证唯物主义观点,并培养学生严谨的科学态度。本节课对分式经过引入,掌握,熟练,提高的'过程,既学习了知识,又获得了知识,又获得了思维能力的提高。但本节课的不足之处是,符号规律的讲解不充分,学生掌握的不够扎实,在合适的机会里需要强化练习。
八年级数学下册教学反思5
今后的教学中:
(1)立足教材,钻研教学大纲的要求;试卷中较多题目是根据课本的题目改编而来,从学生的考试情况来看课本的题目掌握不理想,这说明在平时的教学中对书本的重视不够,过多地追求课外题目的训练,但忽略学生实实在在地理解课本知识,提高思维能力。课堂上尽量把课堂还给学生,让学生积极参与到课堂中,多机会给学生展示,表演,讲题,把思路和方法讲出来,使学生更清淅地理解题目,提升自己对数学的理解。多点让学生独立思考,发现问题,解决问题。
(2)注重培养学生良好的学习习惯。
(3)加强例题示范教学,培养学生解题书写表达。
(4)多一些数学方法、数学思想的渗透,少一些知识的.生搬硬套。
(5)在数学教学过程中,课堂上系统地对数学知识进行整理、归纳、沟通知识间的内在联系,形成纵向、横向知识链,从知识的联系和整体上把握基础知识。
(6)针对学生的两极分化,加强课外作业布置的针对性。让每个学生课外有适合的作业做,对不同层次的学生布置不同难度的作业,提高课外学习的效率,减轻学生课外作业的负担。正确看待学生学习数学的差异,克服两极分化。数学课堂上多考虑、关照中下生,让他们在数学课堂上听得进,肯用手。
(7)教师在平时的课堂教学中必须致力于改变教师的教学行为和学生的学习方式,加强学法指导,提高学生的阅读能力,平时培养学生的自学能力,使学生实实在在地理解课本知识,提高思维能力。平时要关注课本、关注运算能力、关注教学中的薄弱环节。
八年级数学下册教学反思6
一、注重新旧知识的延续性。
通过复习、回忆已经学过的“菱形的性质及判定”为新内容进行铺垫。同时,也为知识间的迁移作了伏笔。《课标》强调学生数学学习的过程是建立在经验基础上的一个主动建构的过程。
二、创设问题情景,学生自主探究。
《数学课程标准》强调指出:“学生的数学学习活动应当是一个生动活泼的、主动的和富有个性的过程。”实施“新课标”,就是要改变以往的学生被动地接受知识的陈旧的学习方式,让学生自主学习、自主探索、自主感悟,自主解决问题。这一堂课,学生自始至终地进行自主学习、自主探索、自主感悟,自主解决问题。教师不再是知识的灌输者,教师的作用只是学生“学习的组织者、引导者与合作者”;学生也不再是接受知识的容器,而是知识的探索者、发现者。例如,在证明定理部分,提出了“你能证明它们吗”问题后,就让学生去自主思考探究,自主解决自己需要解决的问题。然后,老师“出示例题”:“已知菱形边长及一条对角线,求另一条对角线”问题,让学生自主探索求解。学生经过思考、合作探索、尝试列式求解后,终于自行解决了这一问题。而在这一学习过程中,老师只作积极的组织者和理智的引导者,不作任何的解答。
三、小组合作,自主探究。
任何一项科学研究活动或发明创造都要经历从猜想到验证的过程。“怎样的图形是正方形?”,这个问题如何回答,这正是小组合作的契机。通过小组内交流,使学生认识到可以通过多种途径来验证,让学生在小组内完成从特殊到一般的研究过程。然后再小组汇报研究结果以及存在问题。数学教学是数学活动的教学,是师生之间、学生之间交往互动与共同发展的过程。这堂课中的全班交流教学环节,不仅能使学生畅所欲言、共同发展,而且真正体现了学生是学习的主人,是学习的主体这一现代教育的主题。
四、注重数学思想方法,让学生受到数学思想的.熏陶与启迪。这节课在教学过程中渗透了“变与不变”、转化等数学思想。
五、注重数学知识与生活的联系,注重培养学生的应用意识。
在学生新知巩固,知识应用拓展阶段,教师出示现实生活中的物体:方位图和交通警示牌,体现了“数学来源于生活”的理念,同时也突出了“数学注重应用”的理念。
六、不足之处
(1)在“想一想”出示“怎样判别一个平行四边形?”这个问题后,只给学生讨论,没有花费时间去证明以及做练习,造成课后作业错误比较多。
(2)例题后的总结语句太少,这也是我听老教师课后最大的体会。在以后的教学中必须注重习题前后的分析与总结,这一部分有益于学生知识的掌握。
八年级数学下册教学反思7
自我提问是指教师对自己的教学进行自我观察、自我监控、自我调节、自我评价后提出一系列的问题,以促进自身反思能力的提高。这种方法适用于教学的全过程。如设计教学方案时,可自我提问:“学生已有哪些生活经验和知识储备”,“怎样依据有关理论和学生实际设计易于为学生理解的教学方案”,“学生在接受新知识时会出现哪些情况”,“出现这些情况后如何处理”等。备课时,尽管教师会预备好各种不同的学习方案,但在实际教学中,还是会遇到一些意想不到的问题,如学生不能按计划时间回答问题,师生之间、同学之间出现争议等。这时,教师要根据学生的反馈信息,反思“为什么会出现这样的问题,我如何调整教学计划,采取怎样有效的策略与措施”,从而顺着学生的思路组织教学,确保教学过程沿着最佳的轨道运行。教学后,教师可以这样自我提问:“我的.教学是有效的吗”,“教学中是否出现了令自己惊喜的亮点环节,这个亮点环节产生的原因是什么”,“哪些方面还可以进一步改进”,“我从中学会了什么”等。
八年级数学下册教学反思8
1.初中阶段,求函数解析式一般采用待定系数法.用待定系数法解题,先要明确解析式中待定系数的个数,再从已知中得到相应个数点的坐标,最后代入求解.待定系数法确定二次函数解析式时,有三种方式假设:一般式y=ax2+bx+c(a≠0)、顶点式y=a(x-h)2+k(a≠0)、交点式y=a(x-x1)(x-x2)(a≠0,x1、x2是二次函数图象与x轴两交点的横坐标),我们要根据题意选择合适的函数解析式进行假设.
2.存在性问题是一个比较重要的数学问题,通常作为中考的压轴题出现,解决这类问题的一般步骤是:首先假设其存在,画出相应的图形;然后根据所画图形进行解答,得出某些结论;最后,如果结论符合题目要求或是定义定理,则假设成立;如果出现与题目要求或是定义定理相悖的情况,则假设错误,不存在。
3.分类讨论是一种重要的数学思想,对于某些不确定的情况,如由于时间变化引起的数量变化、等腰三角形的.腰或底不确定的情况、直角梯形的直角不确定情况、运动问题、旋转问题等,当情况不唯一时,我们就要分类讨论。在进行分类讨论时,要根据题目要求或是时间变化等,做到不重不漏的解决问题。
4.动点问题,首先从特殊的运动时间得出特殊的结论,再变为说明在任意时刻,里面存在的普遍规律,对于此类问题,常用的解决方法是:先用运动时间的代数式表示出运动线段以及相关一些线段的长,然后通过方程或比例求出运动时间.
5.求最短路线问题,它与求线段差最大值属于同一种典型题的两种演化,都是利用了轴对称的性质来解决问题,前者用的是两点之间线段最短,后者使用的为三角形两边之和大于第三边.
八年级数学下册教学反思9
这节课我感觉较好的方面是课堂气氛比较活跃,本节课我比较倾向于让学生了解黄金分割,感受生活中所存在的数学艺术,调节一下之前比较枯燥的学习心情,找了很多观赏性的图片,以及生活中与黄金分割有关的内容,所以学生感觉很新奇,积极性也很高。
这里主要说说不足的地方,其中最大的问题在于对教材内容把握不够,概念的理解分析不到位,这点可以从课堂练习和课后作业的反馈情况看出。首先黄金分割的概念没有讲得很清楚。重要的三个比值没有强调到位:较长线段与整条线段的比值是 、较短线段与较长线段的比值是 、较短线段与整条线段的比值是 、两点(黄金分割点)之间的距离与整条线段的比值是 。其次黄金分割中的分类讨论的思想也由于时间的限制没有渗透。所以学生对概念理解不是很深刻,课堂练习屡屡出错,课后作业也出现不少问题。
北师大版的教材对于我这种经验不是很丰富的老师来说确实是个挑战,内容看似简单,实际包含很多知识点,如果仅仅按教材上课,是远远不够的`。因为学生现有的能力有限,如果没有老师的指导,很难进行应用。所以潜心钻研教材是很有必要的,上课之前可以先问问有经验的老师这节课要注意的东西,把握好知识点。
除此之外,除了精心备课,还要关注学生课堂上的参与程度也是很重要的,根据学生的状态适时调节讲授方式会使课堂效率更高。
八年级数学下册教学反思10
本节课,我们讨论了一次函数解析式的求法,利用一次函数的知识解决实际问题。求一次函数的解析式往往用待定系数法,即根据题目中给出的两个条件确定一次函数解析式y=kx+b(k≠0)中两个待定系数k和b的值;待定系数法是求函数解析式的基本方法,用“数”和“形”结合的.思想学习函数。
通过本节课的教学发现:
1、有一小部分的学生还是不懂得看函数图像。
2.用一次函数解析式解决实际问题时,不注意自变量的取值范围。
3.结合图象求一次函数解析式,不理解函数解析式和解方程组间的转化。
另外,运用知识解决实际问题是学生学习的目的,是重点,但也是学生的难点,需要慢慢的加强训练。
1.一次函数的图象在日常生活中大量存在,通过观察和应用这些图象可以帮助我们获取更多的信息,解决更多的实际问题。
2.我们在解题的过程中,是先把实际问题转化为一次函数的问题,再利用一次函数的知识解决。
八年级数学下册教学反思11
今天上完一次函数的图像这节课,颇有感慨。一次函数的图像在本章起着很重要的作用,因为只有掌握了函数图象的画法,学生才能够画出函数图像,从而从图像中学习一次函数的性质,也为后一节的一次函数与二元一次方程,一次函数与一次不等式打下基础.
我在设计本节课时,仔细研究了新课标,认为本节的重点是:
1、通过列表、描点、连线教会学生会画一次函数的图像,并与学生一起总结一次函数的图像,画一次函数图像需要几个点,一次函数的图像有什么特征;
2、让学生理解图像上的点的坐标与函数表达式之间的关系。教学环节设计分为三步:1、通过复习再次理解函数图像的概念,并通过举例让学生了解,让学生明确函数图像的重要作用。2、通过实例向学生展示如何画一次函数图像,并从中总结出画函数图像的一般步骤.先由学生归纳,后由老师总结出画函数的三个步骤:1、列表,2、描点,3、连线。
3,让学生练习如何画图,并从中发现学生可能存在的问题,作个别指导,并抽出典型问题进行讲解。
4,通过课件一步步和学生探讨画一次函数图像的步骤。展示不同函数之间的关系。特别是平行,平移的`关系,由课件很直观的展示出来。有助于学生的理解。
在教学过程中总会有这有那的一些不尽人意的地方,有时候是语言表达不当或不严密。例如这节课我在组织教学时,就只给学生讲了一次函数的k相同时,函数图像是平行关系,但是我没有引导学生发现怎样得到这些互相平行的直线。我在讲课中没组织好课堂,学生有些沉闷不与老师配合,有极少同学不愿意动手画函数图像,也有一些同学认为太简单,不愿画。如何使语言更加生动从而吸引学生的注意力是以后备课需要仔细研究、推敲的地方。此外,还是没能改掉不好的习惯,我由于讲得太多,课堂练习较少,同学们自主学习的时间还是太少,以后尽可能少讲,由学生自已完成知识的建构。
八年级数学下册教学反思12
对于课题学习选择方案的教学,我形成了如下的教学反思:
一、成功之处:
1、本节课一开始的创设问题情景,以学生的生活实际设计问题恰当的引入本节课的内容,可以激发学生的求知欲。
2、在教学设计中,基本发挥了学生的主观能动性,以学生为主体,调动学生去主动探究做的还可以!通过小组讨论,师生中间的合作与交流,解决了本节课的重点与难点,让每个学生都能从同伴的交流中获益,同时也培养了学生的合作意识,提高了学生的动手、动口能力和归纳能力。
3、书上的例题只有一题“用那种灯省钱”,缺少方案选择问题的恰当设元和规范书写的训练。为此教学时增加补充引例:活动1和活动2,分别以上网收费问题,购买毛笔和书法练习本的不同方案做铺垫,它们更贴近学生的生活实际,也更容易理解和掌握。能更好的体会本节课的教学重、难点。
4、始终坚持“问题引领学生的思维”,发展学生的思维。设计不同梯度的问题,让水平不同的学生均可以感受学习数学的.的实用性,符合《课标》学习有用的数学的要求。
5、在学生的探究中出现故障时,能够有耐心一步一步的引导,并能做到回归教学的重、难点,让学生自主描述,找出根源最终学生可以独立自主的解决问题。
二、不足之处:
1、在解决学生困惑时,学生们的交流、合作应加以完善,注意掌握尺度做到收紧有度。并且对学生的课堂表现不满意时,情绪有一次失控,对学生的学习不利,今后一定要杜绝。
2、课堂内容设计过多,不利于学生体会本节课的重、难点,即重点不够突出!
3、在课堂的教学中,学生回答的偏少,教师讲述的过多
4、课时提前了3节课,学生没有学习一次函数与一元一次方程,一次函数与一元一次不等式,一次函数与二元一次方程组。而直接探究课题学习选择方案为时过早,学生没有知识准备,所以理解上有难度。
八年级数学下册教学反思13
对于梯形,学生在以前的学习中从未接触过,但大多数孩子都对它有着感性的认识。因此,这节课我结合学生的这种感性认识,设计了“猜图形——找图形——做图形”等几个环节,让学生在这些活动中,强化这种感性认识,同时,通过比较,通过老师的点拨,把这种认识上升到理性认识。如何让学生更主动地参与到这个过程中来,教师如何导才到位,是这节课重点需要注意的。在教学中,我主要结合以下几点来做:
一、创设良好的情境,激发学生的兴趣。
整节课由“猜图形”导入,学生在猜的过程中,能体验到一种亲身参与,获得成功的体验。当最后一个梯形出现时,很多学生没能猜出,这样就不自觉地引起了他们的疑问:为什么会猜错?这样就很大程度激发了他们要了解梯形,了解梯形和平行四边形之间的联系的欲望。
在做图形之前,我没有让学生直接拿材料做斐。而是设计了一个在学具筐里找梯形的环节,这实际上是让学生对梯形进行一次再认,同时也很自然地引到下一个做图形的环节。
二、为学生自主学习提供足够的素材。
书上在做图形的环节,给出了四个范例,学生在预习时肯定都能掌握。如何让他们真正动脑、动手呢?于是除了课本上提供的材料外,我又准备了正方形纸、长方形纸、三角形等,这样,看到与课本上不同的东西,更能激起孩子的探索、创造欲。在课堂上,学生用这些材料确实做出了不同的梯形。更有孩子用三角形做出了梯形,虽然“你是怎样折的”,学生讲得不是很到位,浪费了些时间,但我认为这很真实,这是他们很宝贵的一个自主探索过程,在这个过程中,他们自己就获得了对梯形特征的直接经验。
课后,我想,如果让学生脱离开老师事先准备好的这些材料,让他们自己动脑想一想,他们是不是会想出更好的办法来呢?
三、精心设计课堂中的'每个问题。
在“试一试”中,在学生自己独立量完了上底、下底和高之后,我没有简单地让学生说答案,而是请一位学生上来边指边说:上底是……下底是……,这样,既有了量的结果,同时也是对梯形各部分名称的巩固。在汇报第二个直角梯形时,我问:“什么它的高就是它的一条腰?”使学生在以往三角形学习的旧知上,更明确地知道了:如果梯形的一条腰和梯形的底互相垂直,那么这条腰就是梯形的高。不过遗憾的是,我应该再加一句:这是个什么梯形?在汇报到第三个梯形时,我又问:“为什么不再上下两条边之间画高?”学生进一步强化了梯形高的概念,同时也了解到并不是在上面的就叫上底,在下面的就叫下底。
当然,在设计问题这块上,我做的还很不够,很多问题问的比较随意,并且没有什么明确的目的性与引导性,这点还需在今后的教学中,认真钻研教材,精心设计。
八年级数学下册教学反思14
勾股定理整章书的内容很少,就勾股定理和勾股定理的逆定理,这节课是勾股定理的第一课时,本节课主要是和学生一起探究勾股地理的认识。在教学的过程中感觉有几个方面需要转变的。
一 、转变师生角色,让学生自主学习。由于高效课堂中教学模式需要进行学生自主讨论交流学习,在探究勾股定理的发现时分四人一小组由同学们合作探讨作图,去发现有的直角三角形的三边具有这种关系,有的直角三角形不具有这种性质。可仍然证明不了我们的猜想是否正确。之后用拼图的方法再来验证一下。让学生们拿出准备好的直角三角形和正方形,利用拼图和面积计算来证明 + = (学生分组讨论。)学生展示拼图方法,课件辅助演示。 新课标下要求教师个人素质越来越高,教师自身要不断及时地学习学科专业知识,接受新信息,对自己及时充电、更新,而且要具有幽默艺术的语言表达能力。既要有领导者的组织指导能力,更重要的是要有被学生欣赏佩服的魅力,只有学生配合你,信任你,喜欢你,教师才能轻松驾御课堂,做到应付自如,高效率完成教学目标。 “教师教,学生听,教师问,学生答,教室出题,学生做”的传统教学摸模式,已严重阻阻碍了现代教育的发展。这种教育模式,不但无法培养学生的实践能力,而且会造成机械的学习知识,形成懒惰、空洞的学习态度,形成数学的呆子,就像有的大学毕业生都不知道1平方米到底有多大?因此,高效课堂上要求老师一定要改变角色,把主动权交给学生,让学生提出问题,动手操作,小组讨论,合作交流,把学生想到的,想说的想法和认识都让他们尽情地表达,然后教师再进行点评与引导,这样做会有许多意外的收获,而且能充分发挥挖掘每个学生的潜能,久而久之,学生的综合能力就会与日剧增。
二、转变教学方式,让学生探索、研究、体会学习过程。 学生学会了数学知识,却不会解决与之有关的实际问题,造成了知识学习和知识应用的脱节,感受不到数学与生活的联系,这是当今课堂教学存在的普遍问题,对于我们这儿的学生起点低、数学基础差、实践能力差,对学生的各种能力培养非常不利的。课堂中要特别关注:
1、关注学生是否积极参加探索勾股定理的活动,关注学生能否在活动中积思考,能够探索出解决问题的方法,能否进行积极的'联想(数形结合)以及学生能否有条理的表达活动过程和所获得的结论等;
2、关注学生的拼图过程,鼓励学生结合自己所拼得的正方形验证勾股定理。
3、学习的知识性:掌握勾股定理,体会数形结合的思想。
三、提高教学科技含量,充分利用多媒体。 勾股定理知识属于几何内容,而几何图形可以直观地表示出来,学生认识图形的初级阶段中主要依靠形象思维。对几何图形的认识始于观察、测量、比较等直观实验手段,现代儿童认识几何图形亦如此,可以通过直观实验了解几何图形,发现其中的规律。然而,因为几何图形本身具有抽象性和一般性,一种几何概念可能包含无限多种不同的情形,例如有无数种形状不同的三角形。对一种几何概念所包含的一部分具体对象进行直观实验所得到的认识,一定适合其他情况验回答不了的问题。因此,一般地,研究图形的形状、大小和位置。 培养逻辑推理能力,作了认真的考虑和精心的设计,把推理证明作为学生观察、实验、探究得出结论的自然延续。教科书的几何部分,要先后经历“说点儿理”“说理”“简单推理”几个层次,有意识地逐步强化关于推理的初步训练,主要做法是在问题的分析中强调求解过程所依据的道理,体现事出有因、言之有据的思维习惯。 由于信息技术的发展与普及,直观实验手段在教学中日益增加,本节课利用我们学校建立了电教教室,通过制作课件对于几何学的学习起到积极作用。
八年级数学下册教学反思15
平行四边形在日常生活中随处可见,应用也很广泛,学生在小学已经学习过平行四边形,但小学阶段学生只认识平行四边形的概念,没有涉及平行四边形的定义、表示、性质和判定等。学习平行四边的性质和判定给我很大的启发和帮助,下面说说我的感受:
1、注重让学生经历探索新知的过程。
从学生已有的认识和经验出发,让学生通过剪、拼两个全等的三角形,得到了一个平行四边形开始动手探究,让学生亲自经历观察、操作、想象、推理与交流等数学活动。教师必须在备课时充分考虑到并为学生提供了很多很好的素材,给学生思考、探究、交流的时间和空间,使学生顺利完成探究活动。让学生在动手的过程中,培养学生爱学习数学的思想理念。。
2、注重直观操作与说理的结合。
在探究平行四边形的对角相等、对边相等、对角线互相平分等性质时,老师必须有意识地让学生进行有条理的思考,有规范的表达和交流。无形中引导学生在活动中自觉地思考,自觉地用语言说明操作的过程,养成说理有据的习惯。在中学的教学中更注重抽象思维,初中的这部分教学需要对所思考的过程进行整理分析,进行简单的逻辑推理,这就需要我们初中教师注重从中学的直观几何过渡到论证几何,从简单图形的计算过渡到推理证明。
3、注重学生个体差异,满足学生多样化的需要。
不同的学生由于数学的知识和积累的经验不同,他们的认知方式与思维方法也有差异性。教师必须注意这一点,在教学设计要预先设置好多样化的问题,不同层次的问题,针对不同层次的学生,让他们都有参入到学习当中去,尊重学生解决问题有不同的水平。
教师要做好中学与小学教学的'衔接:
(1)教师首先应该有意识的多了解小学的教学,多了解学生的认知水平和思维能力,这样才能真正做好备教材、备学生。
(2)充分利用素材,通过一些有趣的例子展现数学的真实性,经历操作的过程,体会推理的必要性。
(3)教师在平时的教学中要做好榜样作用,注重直观操作与推理说明相结合,多使用规范化的数学语言,板演规范化,让学生多接触规范化的数学语言。
【八年级数学下册教学反思】相关文章:
八年级下册教学反思03-12
北师大版数学下册教学反思04-04
八年级生物下册教学反思04-10
八年级下册历史教学反思04-14
八年级英语下册教学反思04-22
八年级物理下册教学反思04-15
八年级地理下册教学反思04-22
八年级下册生物教学反思05-16
八年级下册物理教学反思04-02