您的位置:群走网>教学资源>教学反思>《倍数和因数》教学反思
《倍数和因数》教学反思
更新时间:2023-04-11 12:01:57
  • 相关推荐
《倍数和因数》教学反思

  作为一位刚到岗的人民教师,我们要有很强的课堂教学能力,教学反思能很好的记录下我们的课堂经验,写教学反思需要注意哪些格式呢?下面是小编收集整理的《倍数和因数》教学反思,仅供参考,希望能够帮助到大家。

《倍数和因数》教学反思1

  《因数和倍数》是人教版五年级下册第二章第一课时所学内容,这一内容与原来教材比有了很大的不同,旧教材中是先建立整除的概念,再在此基础上认识因数倍数,而现在是在未认识整除的情况下直接认识因数和倍数的,这部分内容学生初次接触,对于学生来说是比较难掌握的内容。首先是名称比较抽象,在现实生活中又不经常接触,对这样的概念教学,要想让学生真正理解、掌握、判断,需要一个长期的消化理解的过程。上完这节课觉得有以下几点做得较好:

  1、通过操作实践,认识因数和倍数

  我开门见山,直接入题,创设了有效的数学学习情境,变抽象为直观。首先让学生动手操作把12个小正方形摆成不同的长方形,再让学生写出不同的乘法算式,借助乘法算式引出因数和倍数的意义,这样在学生已有的知识基础上,从动手操作,直观感知,让学生自主体验数与形的结合,进而形成因数与倍数的意义,使学生初步建立了“因数与倍数”的概念,减缓难度,效果较好。

  2、通过自主化、活动化、合作化,找因数和倍数

  整个教学过程中力求体现学生是学习的主体,教师只是教学活动的组织者、引导者、参与者,。整节课中,我始终为学生创造宽松的学习氛围,让学生自主探索,学习理解因数和倍数的意义,探索并掌握找一个数的因数和倍数的方法,引导学生在充分的动口、动手、动脑中自主获取知识。教学中的多次合作不仅能让学生在合作中发表意见,参与讨论,获得知识,发现特征,而且还很好地培养了学生的'合作学习能力,初步形成合作与竞争的意识。

  3、通过变式拓展,培养学生能力

  课前我精心设计练习题,力求不仅围绕教学重点,而且注意到练习的层次性,趣味性。譬如:让学生用所学知识介绍自己,通过数字卡片找自己的因数和倍数朋友等等。学生拿着自己的数字卡片上台找自己的朋友,让台下学生判断自己的学号是不是这个数的因数或倍数,如果台下学生的学号是这个数的因数或倍数就站到前面。由于答案不唯一,学生思考问题的空间很大,这样既培养了学生的发散思维能力,又使学生享受到了数学思维的快乐,感悟数学的魅力。

  但是还存在一些不可忽视的问题:

  1、课上应该及时运用多媒体将学生找的因数呈现出来,引导学生归纳总结自己的发现:最小的因数是1,最大的因数是它本身。

  2、课堂用语还不够精炼,应该进一步规范课堂用语,做到不拖泥带水。

  3、教者评价应及时跟上个性化的语言评价,激活学生的情感,将学生的思维不断活跃起来,避免单一化。

《倍数和因数》教学反思2

  这个单元课时数比较多,对于学生数感的要求比较高,对于学生观察能力,比较能力,推理能力的培养是个很好的训练。通过一个单元的教学,发现学生在以下知识点的学习和掌握上还存在一些问题:

  1、最大公因数和最小公倍数

  教学中,我让学生经历了三种方法:法一是先找各数的因数(或倍数),再找两个数的公因数(或公倍数),最后再找最大公因数和最小公倍数;二是介绍短除法;三是对于特殊关系的.数(倍数关系或互质数)直接根据规律写结果。根据复习和练习反馈,发现学生对数的感觉比较欠缺,特殊关系的数不容易看出来,且两个概念有时还会出现混淆情况,也就是对因数和倍数的理解不够透彻与深刻。如果学生对找最大公因数和最小公倍数学不扎实,将直接影响到后面的约分和通分。所以我准备在平时每节课都有三到五个训练,并进行专项过关。在应用这个知识解决实际问题时,有少数后进生比较难以理解,需要辅助图形来分析,也需要一个时间的积淀过程。

  2、质数合数与奇数偶数

  这四个概念按照两个不同的标准分类所得。学生在分类思考时对概念的理解比较清晰,但混同在一起容易出现概念的交叉,如2既是质数又是偶数,9既是合数又是奇数。

  3、235倍数的特征

  如果单独让学生去说去判断一个数是不是235的倍数,学生比较清楚,但在灵活应用时就比较迟钝,特别是用短除法寻找公因数时,不能很快的进行反应,数的感觉不佳。

  以上是本单元学生在学习过程中的主要障碍,数感的培养需要一个过程,而概念的理解加深还需要平时不断的训练。多给学生一点耐心,再坚持一份恒心,相信学生们会有提高,会有改变。

《倍数和因数》教学反思3

  因数与倍数属于数论中的知识,是比较抽象的,学生学习理解起来有一定的难度,本节课是在充分借助学生已有的知识经验的基础上切入课题。学生在此之前已经认识了乘法各部分名称,对“倍”叶有了初步的认识,从而本课由此入手,让学生由熟悉的知识经验开始,结合问题引发学生提升思考并发现新的知识结构,体会到此“因数”非彼“因数”,感觉到“倍”与“倍数”的'不同。

  在探索找一个数的因数的方法时,为了让学生更加形象地体会出“要按照一定的顺序去找”才不会遗漏和重复,本课制作了动态的数轴图,通过演示18的因数有1、18(闪动),2、9(闪动),3、6(闪动)学生直观地看到了“顺序”,并且在观察中看到区间不断的缩小,到3至6时观察区间,真正体会到了“找前了”这一学生难以真正理解的地方。

  本课中还要注意到的就是学生在汇报找到了哪些数的因数时,教师根据学生汇报所选择板书的数字要有多样性,如选择板书的数要有奇数、偶数、质数、合数等,虽然此时学生还不知道这些数的概念,但这时给学生一个全面的正面印象,有的数因数个数多,有的少,不是一个数越大因数的个数越多……为后面的学习做好铺垫。

《倍数和因数》教学反思4

  北师大版五年级数学上、第三单元第一节《倍数与因数》是一节概念课。关于“倍数和因数”教材中没有写出具体的数学意义,只是借助乘法算式加以说明,进而让学生探究寻找一个数的倍数和因数。通过备课,我梳理出这样一个教学脉络:乘法算式——倍数和因数——乘法算式——找一个数的倍数。从教材本身来看,这部分知识对于五年级学生而言,没有什么生活经验,也谈不上有什么新兴趣,是一节数学味很浓的概念课。如何借助教材这一载体,让学生在互动、探究中掌握相应的知识,让乏味变成有味呢?我从以下两个方面谈一点教学体会。

  一、设疑迁移,点燃学习的火花。

  良好的开头是成功的一半。我采用一道脑筋急转弯题作为谈话引入课题,不仅可以调动学生的学习兴趣,看似不相关的两件事例中隐藏着共同点:一一对应、相互依存。对感知倍数和因数进行有效的渗透和拓展。

  教学找一个数的倍数时,我依据学情,设计让学生独立探究寻找2的倍数、5的倍数,学生发现2的倍数、5的倍数写不完时,通过讨论,认为用省略号表示比较恰当,用语文中的一个标点符号解决了数学问题,自己发现问题自己解决,学生从中体验到解决问题的愉快感和掌握新知的成就感。

  二、渗透学法,形成学习的技能。

  由于一个数倍数的个数是无限的,那么如何让学生体会“无限”、又如何有序写出来呢?我让学生尝试说出3的倍数。学生找倍数的`方法有:依次加3、依次乘1、2、3……、用乘法口诀等等。我组织学生展开评价,有的学生认为:从小到大依次写,因为有序,所以觉得好;有的学生认为:用乘法算式写倍数,既快而且不受前面倍数的影响,可以很快地找到第几个倍数是多少,因为简捷正确率高所以觉得好。如此的交流虽然花费了“宝贵”的学习时间,但是学生从中能体会到学习的方法,发展了思维,这才是最宝贵的。正所谓没有一路上的山花烂漫,哪有山顶上的风光无限。

  三、学练结合,及时把握学生学情。

  在学生通过具体例子初步认识了倍数和因数以后,通过大量的练习让学生在练习中感悟,练习中加深理解概念;在探究出找倍数的方法以后,及时让学生写出2的倍数、5的倍数,从而引导学生发现一个数的倍数的特点,并适时进行针对性练习,巩固新知。

  课尾,我设计了四道达标检测练习,将整堂课的内容进行整理和概括,对易混淆的概念加以比较,对本节课重要知识点进行检测,及时掌握了学生的学情。

  纵观整节课,学生在学习过程中自始至终处于主体地位,尝试练习、自主探索、解决问题,教师只是加以引导,以合作者的身份参与其中。学生在思维上得到了训练,探究问题、寻求解决问题策略的能力也会逐步得到提高。

《倍数和因数》教学反思5

  教学目标:

  1、 使学生结合整数乘、除法运算初步认识倍数和因数的含义,探索求一个数的倍数和因数的方法,能在1~100的自然数中找出10以内某个数的所有倍数,能找出100以内某个数的所有因数。

  2、 使学生在认识倍数和因数以及探索一个数的倍数或因数的过程中,进一步体会数学知识之间的内在联系,提高数学思考的水平。

  教学过程:

  一、谈话导入。

  智力题:有三个人,他们中有2个爸爸,2个儿子,这是怎么回事?

  教师说明:人和人之间是有联系的,数和数之间也是有联系的。(板书:数和数)

  二、初步认识倍数和因数。

  1、创设情境。

  用12个同样大的正方形拼成一个长方形,可以怎么拼?请同学们先想象一下,然后说出你的摆法,并用乘法算式表示出来。

  学生汇报拼法,教师依次展示长方形的拼图,并板书:

  43=12 62=12 121=12

  教师根据43=12 揭示:43=12 12是4的倍数,12也是3的倍数,4和3都是12的因数。

  揭示课题:倍 因

  提出要求:你能用倍数和因数说一说 62=12 121=12吗?

  指名学生回答,其他学生补充。

  2、深化感知。

  (1) 完成想想做做第1题。同桌互说以后再指名学生叙说。

  (2) 你能举出一些算式,说说谁是谁的倍数,谁是谁的因数吗?

  教师说明:为了方便,我们在研究倍数和因数时,所说的数一般指不是0的自然数。

  三、探求一个数的倍数。

  1、设疑。

  在刚才的学习中,我们知道了3的倍数有12,3的倍数除了12还有别的吗?请在纸上写出3的倍数。你能完成得又对又好吗?。学生在书写过程中引发冲突:为什么停下来不写了?有什么困难吗?引导学生讨论后达成共识:加省略号表示写不完。

  2、交流。

  投影展示学生作业。

  讨论对不对?。

  讨论好不好?。

  揭示有序,为什么要有序地写倍数呢?

  全班讨论:你是怎么写3的倍数的?。

  31 32 33

  3 3+3 6+3

  一三得三 二三得六 三三得九

  引导学生讨论得出:用依次1、2、3写出3的倍数。

  3、深化。

  请写出2的倍数,5的倍数。

  学生练习后组织评讲。

  4、引导观察,发现规律。

  小组讨论:观察这三道例子,你有什么发现?

  全班交流,概括规律,

  5、小结:发现这些规律可以更好地帮助我们寻找一个数的倍数。

  四、探求一个数的因数。

  1、设疑。

  刚刚我们学会了找一个数的倍数,接下来我们来找一个数的因数。

  请写出36的因数,你可以独立思考,可以和同桌讨论,看谁写得又对又多。

  学生试写36的因数。

  2、组织讨论。

  你是怎么找36的因数的?

  ( )( )=36 从一道乘法算式中可以找到2个36的因数,66=36呢?

  36( )=( ) 从一道除法算式中也可以找到2个36的因数。

  讨论多。

  问:写得完吗?你可以按照什么顺序写?

  师板书36的因数(从两端往中间写),同时指出 :当两个因数越来越接近时,

  也就快要写完了。最后写上句号。

  3、巩固深化。

  请写出15的因数,16的因数。

  学生练习后组织评讲。

  4、引导观察,发现规律。

  问:通过观察这三道例子,你能发现什么规律?

  5、小结:写一个数的因数时可以从1和它本身来写,从小到大依次寻找。

  五、巩固拓展。

  1、完成想想做做第2、3题。

  学生填表后,组织讨论,你是怎么填写的?指名回答相应的问题。

  2、猜数游戏。

  同学们下飞行棋时,掷筛子,在1、2、3、4、5、6中进行猜数

  (1)它是4的倍数。

  (2)它是9的.因数,又是3的倍数。

  (3)2和3都是它的倍数。

  (4)它是9的因数,又是3的倍数。

  (5)它是这六个数的因数。

  (6)它是因数。

  (7)它既是本身的倍数,又是本身的因数。

  教后反思:

  这是一节概念课,关于倍数和因数教材中没有写出具体的数学意义,只是借助乘法算式加以说明,进而让学生探究寻找一个数的倍数和因数。通过备课,我梳理出这样一个教学脉络:乘法算式倍数和因数乘法算式找一个数的倍数和因数。从教材本身来看,这部分知识对于四年级学生而言,没有什么生活经验,也谈不上有什么新兴趣,是一节数学味很浓的概念课。如何借助教材这一载体,让学生在互动、探究中掌握相应的知识,让乏味变成有味呢?我从以下三个方面谈一点教学体会。

  一、设疑迁移,点燃学习的火花。

  良好的开头是成功的一半。我采用脑筋急转弯中的一道题作为谈话进入正题,不仅可以调动学生的学习兴趣,看似不相关的两件事例中隐藏着共同点:一一对应、相互依存。对感知倍数和因数进行有效的渗透和拓展。

  教学找一个数的倍数时,我依据学情,设计让学生独立探究寻找3的倍数。学生发现3的倍数写不完时面面相觑,左顾右盼。学生通过讨论,认为用省略号表示比较恰当。用语文中的一个标点符号解决了数学问题,自己发现问题自己解决,学生从中体验到解决问题的愉快感和掌握新知的成就感。教师一声亲切的问候:怎么停下来了呢?、一声惊讶:哦!写不完呀?、一句激励:能想出办法吗?。看似教师怠工的预设,是为了学生越位的生成。

  二、渗透学法,形成学习的技能。

  由于一个数倍数的个数是无限的,那么如何让学生体会无限、又如何有序写出来呢?我设计了尝试练习引出冲突讨论探究这么一个学习环节。学生带着又对又好的要求开始自主练习,学生找倍数的方法有:依次加3、依次乘1、2、3、用乘法口诀等等。在学生充分讨论的基础上,我组织学生围绕好展开评价,有的学生认为:从小到大依次写,因为有序,所以觉得好;有的学生认为:用乘法算式写倍数,既快而且不受前面倍数的影响,可以很快地找到第几个倍数是多少,因为简捷正确率高所以觉得好。如此的交流虽然花费了宝贵的学习时间,但是学生从中能体会

  您现在正在阅读的《倍数和因数》教学设计及反思文章内容由收集!本站将为您提供更多的精品教学资源!《倍数和因数》教学设计及反思到学习的方法,发展了思维,这才是最宝贵的。正所谓没有一路上的山花烂漫,哪有山顶上的风光无限。

  三、活用教材,拓展学习的深度。

  教材中安排36( )=( )这一道除法算式来找一个数的因数。我觉得这样的设计可能会带来几点不足,其一:学生感知倍数和因数的概念、寻找一个数的倍数都是借助乘法算式,同样,找一个数的因数也可以利用乘法,让所学的知识形成系统岂不更有利于学生进行有效学习吗?其二:从学情来分析,相对于除法,学生更熟练、更喜欢运用乘法。以学定教,真正做到以人为本。我在教学时引导学生讨论得出:借助( )( )=36来寻找一个数的因数。

  课尾,我设计了一道掷筛子猜数练习,通过7道题,将整堂课的内容进行整理和概括,对易混淆的概念加以比较,对后续的学习进行适当的铺垫。融知识性、趣味性为一体,收到了课虽止意未尽的良好效果。

  纵观整节课,学生在学习过程中自始至终处于主体地位,尝试练习、自主探索、解决问题,教师只是加以引导,以合作者的身份参与其中。整节课似行云流水、波澜不惊,但我想学生在思维上得到了训练,探究问题、寻求解决问题策略的能力也会逐步得到提高的。

《倍数和因数》教学反思6

  这是一节概念课,关于“倍数和因数”教材中没有写出具体的数学意义,只是借助乘法算式来认识倍数和因数,从而体会倍数和因数的意义,进而让学生探究寻找一个数的倍数和因数以及倍数和因数的特征。

  这部分知识对于四年级学生而言,没有什么生活经验,也谈不上有什么新兴趣,是一节数学味很浓的概念课,因此为了让乏味变成有味,在课开始之前,跟同学们讲了韩信点兵的故事,从一个同余问题的解决让学生产生兴趣,并告知学生所用知识与本节课所学知识有很大关联,引导学生认真学好本节课的知识。

  在教授倍数和因数时,我让学生自己动手操作,感受不同形状下所得到的不同乘法算式,通过这些乘法算式认识倍数和因数,并且让学生自己想一道乘法算式,让同桌用倍数和因数说一说,从学生的自身素材去理解概念,使学生对新知识印象更深刻,从而使学生进一步理解和掌握倍数和因数。但是,在这一环节中,由于紧张,忘记让学生从“能不能直接说3是因数,12是倍数”这一反例中体会倍数和因数是一种相互依存的关系,以致到后面做判断时出现很多同学认为“6是因数,24是倍数”这种说法是正确的。

  本节课的难点是找一个数的因数,因此,我将教材中先教找一个数的倍数改成先教找一个数的因数,也正因为找一个数的'因数比较有难度,所以,我先让学生根据之前例题中的三个乘法算式来说一说12的因数,从而让学生感受到找一个数的因数可以利用乘法算式来找,并且初步让学生感受有序的思想,给学生一个方法的认知。为了让学生得到反思,在找的过程中,请学生互评,在交流中产生思维的碰撞;请学生自己纠正,在错误中产生反思意识,从而能够提升学生自主解决问题的能力。

  可是,作为一名新教师,对于课堂中的生成,没有足够的经验和课堂机智将其很好的转化成学生所需达到的目标,以致跟预设的效果不一致,学生没有很充分地得到反思。并且对于课堂中的一些细节问题,处理得还不够到位。本节课的教学对于我来说是一个机会,也是一个契机,今后,我会不断完善教学,总结经验教训,在各个方面严格要求自己,争取在今后的工作中做的更好!

《倍数和因数》教学反思7

  【教学内容】

  人教版数学五年级下册P12一14,练习二。

  【教学过程】

  一、操作空间,初步感知。

  1.同桌用12块完全一样的小正方形拼成一个长方形,有几种拼法?要求:能想象的就想象,不能想象的才借助小正方形摆一摆。

  2.学生动手操作,并与同桌交流摆法。

  3.请用算式表达你的摆法。

  汇报:1×12=12,2×6=12,3×4=12。

  【评析】通过让学生动手操作、想象、表达等环节,既为新知探索提供材料,又孕育求一个数的因数的思考方法。

  二、探索空间,理解新知。

  1.理解因数和倍数。

  (1)观察3×4=12,你能从数学的角度说说它们之间的关系吗? 师根据学生的表达完成以下板书: 3是12的因数 12是3的倍数 4是12的因数 12是4的倍数 3和4是12的因数 12是3和4的倍数

  (2)用因数和倍数说说算式1×12=12,2×6=12的关系。

  (3)观察因数和倍数的相互关系。揭示:研究因数和倍数时,所指的数是整数(一般不包括O)。

  2.求一个数的因数。

  (1)出示2,5,12,15,36。从这些数中找一找谁是谁的因数。 学生汇报。

  师:2和12是36的因数,找1个、2个不难,难就难在把36所有的因数全部找出来,请同学们找出36的所有因数。

  出示要求:

  ①可独立完成,也可同桌合作。

  ②可借助刚才找出12的所有因数的方法。

  ③写出36的所有因数。

  ④想一想,怎样找才能保证既不重复,又不遗漏。 教师巡视,展示学生几种答案。

  生1:1,2,3,4,9,12,36。

  生2:1,36,2,18,3,12,4,9,6。

  生3:1,4,2,36,9,3,6,12,18。

  (2)比较喜欢哪一种答案?为什么?

  用什么方法找既不重复又不遗漏。(按顺序一对一对找,一直找到两个因数相差很小或相等为止)

  师:有序思考更能准确找出一个数的所有因数。 完成板书:描述式、集合式。

  (3)30的因数有哪些?

  【评析】学生围绕教师出示的思考步骤,寻找36的所有因数。既留足了自主探索的空间,又在方法上有所引导,避免了学生的盲目猜测。通过展示、比较不同的答案,发现了按顺序一对一对找的好方法,突出了有序思考的重要性,有效地突破了教学的难点。

  3.求一个数的倍数。

  (1)3的倍数有:——,怎样

  有序地找,有多少个?

  找一个数的倍数,用1,2,3,4?分别乘这个数。 (2)练一练:6的'倍数有: ,40以内6的倍数有:一o

  【评析】

  由于有了有序思考的基础,求一个数的倍数水到渠成,本环节重在思考方法上的提升。

  4.发现规律。

  观察上面几个数的因数和倍数的例子,你对它们的最大数和最小数有什么发现? 根据学生汇报,归纳:一个数的最小因数是I,最大因数是它本身;一个数的最小倍数是它本身,没有最大的倍数。

  【评析】

  通过观察板书上几个数的因数和倍数,放手让学生发现规律,既突出了学生的主体地位,又培养了学生观察、归纳的能力。 三、归纳空间,内化新知。

  师生共同总结:

  (1)因数和倍数是相互的,不能单独存在。

  (2)找一个数的因数和倍数,应有序思考。

  四、拓展空间,应用新知。

  1、15的因数有:——,15的倍数有:——。

  2.判断。

  (1)6是因数,24是倍数。( )

  (2)3.6÷4=0.9,所以3.6是4的因数。 ( )

  (3)1是1,2,3,4?的因数。 ( )

  (4)一个数的最小倍数是21,这个数的因数有1,5,25。( )

  3、选用4,6,8,24,1,5中的一些数字,用今天学习的知识说一句话。

  4、举座位号起立游戏。

  (1)5的倍数。

  (2)48的因数。

  (3)既是9的倍数,又是36的因数。

  (4)怎样说一句话让还坐着的同学全部起立。

  【评析】

  本环节的前3题侧重于巩固新知,后2题侧重于发展思维。通过“说一句话”和“起立游戏”,展现了学生的个性思维,体现了知识的应用价值。

  【反思】

  本课教学设计重在让学生通过自主探索,掌握求一个数的因数和倍数的方法,体验有序思考的重要性。体现了以下两个特点: 一、留足空间,让探索有质量。

  留足思维空间,才能充分调动多种感官参与学习,充分发挥知识经验和生活经验,使探索成为知识不断提升、思维不断发展、情感不断丰富的过程。第一,把教材中的飞机图改为拼长方形,让同桌同学借助12块完全一样的正方形拼成一个长方形。由于方法的多样性,为不同思维的展现提供了空间。第二:放手让每个同学找出36的所有因数,由于个人经验和思

  维的差异性,出现了不同的答案,但这些不同的答案却成为探索新知的资源,在比较不同的答案中归纳出求一个数的因数的思考方法。第三:通过观察12,36,30的因数和3,6的倍数,你发现了什么?由于提供了丰富的观察对象,保证了观察的目的性。第四:让学生“选用4,6,8,24,1,5中的一些数字,用今天学习的知识说一句话”。不拘形式的说话空间,不仅体现了差异性教学,更是体现了不同的人在数学上的不同发展。 二、适度引导,让探索有方向。

  引导与探索并不矛盾,探索前的适度引导正是让探索走得更远。探索12块完全一样的正方形拼成一个长方形,有几种拼法?教师提示能想象的就想象,不能想象的可借助小正方形摆一摆。这样的引导,是尊重学生不同思维的有效引导。

  在找36的所有因数时,教师出示4条要求,既是引导学生思考的方向,又是提醒学生探索的任务。在让学生观察几个数的因数和倍数时,引导学生观察最大数和最小数,有什么发现?这样的引导,避免了学生的盲目观察。可见,适度的引导,保证了自主探索思维的方向性和顺畅性。

  整堂课,学生想象丰富、思维活跃、思考有序。整个认知过程是体验不断丰富、概念不断形成、知识不断建构的过程。

《倍数和因数》教学反思8

  简单的内容中蕴藏着复杂的关系,由于新教材把“整除”的概念去掉,再也不提谁被谁整除,而改成借助整除模式na=b,直接引出因数和倍数的概念,这部分内容显得比较容易了,学生在学因数时,对于求一个数的因数,及理解一个数的因数最小是1,最大因数是它本身,及一个数的`因数的个数是有限的,感觉很清楚,明白。在学倍数时,对求一个数的倍数及理解一个数的倍数中最小的是它本身,没有最大的倍数也认为容易简单,但有关因数、倍数的综合练习不少学生开始犹豫、混淆。如判断一个数的因数的个数是无限的,不少学生判断为对。练习中:18是的倍数,个别学生选择了18、36、54……。针对这种情况,我调整了练习,组织学生研究了以下几个问题:

  1、写出12的因数和倍数,写出16的因数和倍数。

  2、观察比较,会打消列问题:一个数的因数和它本身的关系,

  3、为什么一个数的因数的个数是有限的?最小是1,最大是它本身,也就是1和它本身之间的整数。为什么一个数的倍数的个数是无限的?最小是它本身,没有最大的。

  通过对这几个问题的讨论,多数学生较好的区分了一个数的因数和倍数

《倍数和因数》教学反思9

  不知不觉,我们又进行了第二单元的学习。第二单元的内容是《因数与倍数》,这部分内容与老教材相比变化很大,我觉得第二、四单元是本册教材中变化最大的单元,要引起足够的重视。

  1、以往认识因数和倍数是借助于整除现象,“X能被X整除,或X能整除X”,所以X是X的因数,X是X的倍数。现在的教材完全不同了,2X3=6,所以2和3是6的因数,6是2和3的倍数,借助整除的模式na=b直接引出因数和倍数的概念。

  2、以往数学教材中,概念教学的量很大。数的整除,因数(老教材称为约数),倍数,2、5、3的倍数的特征(老教材称为能被2、5、3整除的数的特征),质数,倒数,分解质因数,最大公因数(以往的`教材中称为最大公约数),最小公倍数等内容共同编排在后面,合为一个单元。而现在新教材本单元只安排了因数和倍数,2、5、3的倍数的特征,质数合数。其它内容安排在了第四单元《分数的意义和性质》,借助约分引出公约数、公倍数的学习,改变了概念多而集中,抽象程度过高的现象。

  3、以往求最大公约数,最小公倍数时,采用的方法是唯一的、固定的,也就是有短除法分解质因数,而新教材中鼓励方法多样化,不把它作为正式的内容教学,而是出现在教材的你知道吗中?不那么呆板了,尊重学生的思维差异。

  可见,编者为体现新课标精神对本部分内容作了精心的调整,煞费苦心,可是学完了本单元的第一部分和第二部分内容,我对本单元的学习内容有了小小的疑问。这一单元内容分为因数和倍数,2、5、3的倍数的特征,质数和合数,我觉得第一部分内容和第三部分内容的关系很大,连续性强。知道了什么是因数和倍数,也会找一个数的因数和倍数了,那么就应该从找因数和个数问题上学习质数和合数。教材对质数和合数的学习内容设计较好,开门见山让学生找出1-20各数的因数,观察因数的个数有什么规律,再引出质数和合数的学习。可为什么在中间突然加上了2、5、3的倍数的特征?这样感觉前后内容失去了联系,不够自然流畅。所以我觉得可以把二三部分内容作为适当的调整,即因数和倍数,质数和合数,2、5、3的倍数的特征会比较好一些。

《倍数和因数》教学反思10

  本节课的内容是在学生已经学习了一定的整数知识(包括整数的知识、整数的四则运算及其应用)的基础上,进一步认识整数的性质。本单元所涉及的因数和倍数都是初等数论的基础知识。

  成功之处:

  1.理解分类标准,明确因数和倍数的含义。在例1教学中,首先根据不同的除法算式让学生进行分类,同时思考其标准依据是什么。通过学生的独立思考和小组交流学生得出:第一种是分为两类:一类是商是整数,另一类是商是小数;第二种是分为三类:一类商是整数,一类是小数,另一类是循环小数。究竟怎样分类让学生在争论与交流中达成一致答案分为两类。然后根据第一类情况得出倍数和因数的含义,特别强调的是对于因数和倍数的含义要符合两个条件:一是必须在整数除法中,二是必须商是整数而没有余数。具备了这两个条件才能说被除数是除数的`倍数,除数是被除数的因数。

  2.厘清概念倍数和几倍,注重强调倍数和因数的相互依存性。在教学中可以直接告诉学生因数和倍数都不能单独存在,不能说2是因数,12是倍数,而必须说谁是谁的因数,谁是谁的倍数。对于倍数与几倍的区别:倍数必须是在整数除法中进行研究,而几倍既可以在整数范围内,也可以在小数范围内进行研究,它的研究范围较之倍数范围大一些。

  不足之处:

  1.练习设计容量少了一些,导致课堂有剩余时间。

  2. 对因数和倍数的含义还应该进行归纳总结上升到用字母来表示。

  再教设计:

  1.根据课本的练习相应的进行补充。

  2.因数和倍数的含义用总结为a÷b=c(a、b、c均为非0自然数),a是b和c的倍数,b和c是a的因数。

《倍数和因数》教学反思11

  《倍数和因数》这一内容与原来教材比有了很大的不同,老教材中是先建立整除的概念,再在此基础上认识因数倍数,而现在是在未认识整除的情况下直接认识倍数和因数的。数学中的“起始概念”一般比较难教,这部分内容学生初次接触,对于学生来说是比较难掌握的内容。首先是名称比较抽象,在现实生活中又不经常接触,对这样的概念教学,要想让学生真正理解、掌握、判断,需要一个长期的消化理解的过程。

  这节课我在教学中充分体现以学生为主体,为学生的探究发现提供足够的时空和适当的指导,同时,也为提高课堂教学的有效性,这节课带给我的感想是颇多的,但综观整堂课,我觉得要改进的地方还有很多,我只有不断地进行反思,才能不断地完善思路,最终才能有所悟,有所长。下面就说说我对本课在教学设计上的反思和一些初浅的想法。

  比如在认识“因数、倍数”时,不再运用整除的概念为基础,引出因数和倍数,而是直接从乘法算式引出因数和倍数的概念,目的是减去“整除”的数学化定义,降低学生的认知难度,虽然课本没出现“整除”一词,但本质上仍是以整除为基础。本课的'教学重点是求一个数的因数,在学生已掌握了因数、倍数的概念及两者之间的关系的基础上,对学生而言,怎样求一个数的因数,难度并不算大,因此教学例题“找出18的因数”时,我先放手让学生自己找,学生在独立思考的过程中,自然而然的会结合自己对因数概念的理解,找到解决问题的方法(培养学生对已有知识的运用意识),然后在交流中不难发现可用乘法或除法来求一个数的因数(列出积是18的乘法算式或列出被除数是18的除法算式)。在这个学习活动环节中,我留给了学生较充分的思维活动的空间,有了自由活动的空间,才会有思维创造的火花,才能体现教育活动的终极目标。

  新课标实施的过程是一个不断学习、探究、研究和提高的过程,在这个过程中,需要我们认真反思、独立思考、交流探讨,学习研究,与学生平等对话,在实践和探索中不断前进。

《倍数和因数》教学反思12

  《倍数和因数》是四下第九单元的内容。教学时,我首先让学生动手操作把12个小正方形摆成不同的长方形,再让学生写出不同的乘法算式,借助乘法算式引出倍数和因数的意义。这样在学生已有的知识基础上,从动手操作到直观感知,让学生自主体验数与形的结合,进而形成倍数与因数的意义,使学生初步建立了“倍数与因数”的概念。根据算式直接说明谁是谁的倍数,谁是谁的因数,学生很容易接受,再通过学生自己举例和交流,进一步加深对倍数和因数意义的理解。从学生的反应和课堂气氛来看,教学效果还是不错的。

  能不重复、不遗漏、有序地找出一个数的倍数和因数,是本课的教学难点。教学时,我先让学生自己找3的倍数,汇报交流后通过对比(一种是没有顺序,一种是有序的)得出如何有序地找一个数的倍数的方法。对于倍数,学生在以前的`学习中已有所接触,所以学生很容易学,用的时间也比较少。

  对于找一个数的因数,学生最容易犯的错误就是漏找,即找不全。所以在学生交流汇报时,我结合学生所叙思维过程,相机引导并形成有条理的板书,如:36÷1=36,36÷2=18,36÷3=12,36÷4=9,36÷6=6。这样的板书帮助学生有序的思考,形成明晰的解题思路。学生通过观察,发现当找到的两个自然数非常接近时,就不需要再找下去了。书写格式这一细节的教学,既避免了教师罗嗦的讲解,又有效突破了教学难点。

《倍数和因数》教学反思13

  《因数和倍数》这部分内容学生初次接触,对于学生来说是比较难掌握的内容。首先是名称比较抽象,在现实生活中又不经常接触,对这样的概念教学,要想让学生真正理解、掌握、判断,需要一个长期的消化理解的过程。

  同时这部分内容是比较重要的,为五年级的最小公倍数和最大公因数的学习奠定了基础。

  本节可充分发挥学生的主体性,让每个学生都能参加到数学知识的学习中去,调动学生学习的兴趣和主动性。本节课主要从以下几个方面进行教学的。

  一:动手操作探究方法.

  我创设有效的数学学习情境,数形结合,变抽象为直观。首先让学生动手操作把12个小正方形摆成不同的长方形,再让学生写出不同的乘法算式,借助乘法算式引出因数和倍数的意义。这样在学生已有的知识基础上,从动手操作,直观感知,变抽象为具体。

  二、倍数教学,发现特点。

  利用乘法算式,让学生找出3的倍数,这里让学生理解:(1)3的倍数应该是3与一个数相乘的积。(2)找3的倍数是要有一定的顺序,依次用1、2、3……与3相乘。有了找3倍数的方法,在上学生找出2和5的倍数。这样即巩固对例题的理解,同时也为接下来的讨论倍数的特点奠定基础。最后让学生通过讨论发现:(1)一个数的倍数个数是无限的(要用省略号)。(2)一个数的最小倍数是本身,没有最大的倍数。

  三、因数教学,发现特点。

  找一个数因数的方法是本节课的难点。找一个数的因数的'方法和倍数相似,大部分学生都用乘法算式寻找一个数的因数,这里教师可以通过几到有序排列的除法算式启发学生进一步理解。强调有序(从小到大),不重复、不遗漏。随后让学生找出15、16的因数有那些。最后通过比较讨论让学生得出因数的特点:(1)一个数因数的个数是有限的。(2)一个数最小的因数是1,最大的因数是本身。(让学生明白所有的数都有因数1).

  四、练习反馈情况

  从学生的作业情况来看,大部分学生掌握的还是不错的,有部分基础差的学生,有如下几点错误出现:1、倍数没有加省略号。2、分不清倍数和因数,倍数也加省略号,因数也加省略号。3、因数有遗漏的情况。从以上情况来看,在今后的教学中要多关注基础比较差的学生,注意补差工作;同时要注意教学中细节的处理。

《倍数和因数》教学反思14

  1、立足于学生的思维特点。中年级学生的思维特点是由具体形象思维到抽象概括思维过渡的重要年龄段。因此,我放弃了用12个小正方形摆长方形的动手实践活动,而选用了看12个小正方形在脑中想象摆法。在留有短暂时间让学生思考,脑中逐渐有了长方形的图象纷纷举手之后,我又不急于提问,而是追问:你能不能用一道乘法算式来表示?当学生说出乘法算式时,也不急于就此,还让其余同学想想他是如何摆的,做到全员参与。这种由形象到抽象,再由抽象到形象的过程,是符合学生的思维特点的,对于发展学生的抽象概括思维是有利的。

  2、层层辅垫,为学生自主探索打下了坚实的基础。探索36的所有因数是本节课的重难点,我在这之前做了层层的辅垫。

  (1)3个乘法算式的呈现我作了调整:1×12=12,2×6=12,3×4=12。潜移默化的影响学生的有序思考。

  (2)在学生根据其余两算式说因数和倍数的关系之后,我对12的所有因数进行了小结:12的因数有1,12,2,6,3,4。让学生感受到一道乘法算式中蕴藏着两个因数。

  (3)36这个数比较大,学生找起36的所有因数时有点困难,我设计了从3,5,18,20,36五个数中选择两个数来说说谁是谁的因数,谁是谁的倍数?这一教学环节,减轻了学生的困难,同时也能检验学生对因数和倍数概念是否已正确认识。当学生会说3是36的因数,36是3的倍数时,说明他们脑中已经有了判断的依据:3×12=36。

  (4)在学生独立探索前,我又提醒学生,在找36的所有因数时,如果遇到困难,不要忘了我们已经寻找过12这个数的所有因数,可以作为参考。

  这四个方面的准备,学生的独立思考才有了思维的依托,遇到困难,他们就会自我想办法,自我解决问题,这样的探索就会有效,不会浮于表面,流于形势。

  3、有层次的呈现作业,给学生以正面引导为主。在概括总结找36所有因数的方法时,我找了三份的作业,第一份是有序,成对思考的1,36,2,18,3,12,4,9,6。在交流中让学生明确只有有序的,成对的'思考才会做到既不遗漏,又能快捷方便,第二份作业是所有的因数按顺序排列的1,2,3,4,6,9,12,18,36。结果作业中漏了一个4,这是个时机,在表扬了这个学生能按顺序的排列,做到美观这个优点之后,提出问题:美中不足的是什么?学生:一个一个找麻烦,还容易丢。我接着追问;我们能给他提些建议吗?第三份是无序的有遗漏的,也让学生给他提建议,让他也能做到一个不漏。这三份作业对比下来,先教给学生正确的思考方法,再以正确的方法判断其他同学思考不当的地方,并提出建议。寻找一个数所有因数的方法也能深刻地印在学生脑里。

  4、大胆放手,产生矛盾冲突,发现问题,想办法解决问题。在找3的倍数时,我想学生有了前面的学习基础,我直接抛出问题:你能像上面这样有序的从小到大的找出3的倍数吗?学生在找中发现:3的倍数有很多,写不完。我追问;那怎么办,有办法吗?通过一会儿的沉默思考后,纷纷有学生提出省略号。

  5、趣味练习,联想,探索。练习中我设计了两道题,一是猜我的电话号码,激发起学生的兴趣,二是探索计数器的奥秘,多位老师问起我的设计意图,我是这样想的:重在培养学生善于联想,勇于探索的习惯。由个体现象联想到同类现象并能深入探索,这是创造的源泉,牛顿看到苹果落地,通过联想,最终发现了万有引力定律,瓦特看到茶壶里冒出蒸气,通过联想,最终发明了蒸气机…这与一个人的认真观察,善于联想,勇于探索是分不开的。

《倍数和因数》教学反思15

  《因数和倍数》是一节数学概念课,人教版新教材在引入因数和倍数的概念时与以往的教材有所不同。在以往的教材中,都是通过除法算式来引出整除的概念,每个除法算式对应着一对有整除关系的数,如b÷a=c,表示b能被a整除,b÷c=a,表示b能被c整除。在此基础上再引出因数和倍数的概念。而现在的人教版教材中没有用数学语言给“整除”下定义,而是利用一个简单的实物图(2行飞机,每行6架)引出一个乘法算式2×6=12,通过这个乘法算式直接给出因数和倍数的概念。我觉得这部分内容学生初次接触,对于学生来说是比较难掌握的内容。尤其对因数和倍数和是一对相互依存的概念,不能单独存在,不是很好理解。我通过捕捉生活与数学之间的联系,帮助学生理解因数倍数相互依存的关系。所以在上课之前我特意和孩子们玩了一个小游戏。用“我和谁是好朋友”这句话来理解相互依存的意思。即“我是谁的好朋友”,“谁是我的好朋友”,而不能说“我是好朋友”。学生对相互依存理解了,在描述因数和倍数的.概念时就不会说错了。对于这节课的教学,我特别注意下面几个细节来帮助学生理解因数和倍数的概念。

  一是教材虽然不是从过去的整除定义出发,而是通过一个乘法算式来引出因数和倍数的概念,但本质上任是以“整除”为基础。所以我上课时特别注意让学生明白什么情况下才能讨论因数和倍数的概念。我举了一些反例加以说明.二是要学生注意区分乘法算式中的“因数”和本单元中的“因数”的联系和区别。在同一个乘法算式中,两者都是指乘号两边的整数,但前者是相对于“积”而言的,与“乘数”同义,可以是小数,而后者是相对于“倍数”而言的,两者都只能是整数。三是要注意区分“倍数”与前面学过的“倍”的联系与区别。“倍”的概念比“倍数”要广。可以说“15是3的5倍”,也可以说“1.5是0.3的5倍”,但我们只能说“15是3的倍数”,却不能说“1.5是0.3的倍数”。我在课堂上反复强调,帮助孩子们认真理解辨析,所以学生一节课下来对这组概念就理解透彻了,不会模糊了。

  《倍数和因数》教学反思2

  本单元的重点是让学生掌握因数、倍数、质数、合数等概念,以及它们之间的联系和区别,内容较为抽象,为让学生理清各概念间的前后承接关系,达到融会贯通的程度,在学习《因数和倍数》这节课时,我注意做到以下几点:

  一、加强对概念间相互关系的梳理,引导学生从本质上理解概念。

  因数和倍数是最基本的两个概念,理解了因数和倍数的含义对于一个数的因数的个数是有限的、倍数的个数是无限的等结论自然也就掌握了。因此,教学时,我引导学生观察生活中的情景图引出乘法算式2×6=12,让学生在多说中体会、理解乘法算式中两数之间的因数与倍数的关系。学生在交流中轻松地理解了两数之间因数与倍数之间的关系,同时引出12的所有因数,让孩子感受到用乘法算式找一个数的因数的方法,为后面学习找一个数的因数做好铺垫。

  二,引导孩子在自主探究中学习新知

  在学习找一个数的因数时,让孩子们动脑思考,小组合作中探究方法,孩子们想出的方法很多,充分发挥了他们智慧,然后在老师的引导中优化了方法,孩子们在体验中逐步掌握了方法,学得深刻,方法熟练。

  三、注意培养学生的抽象思维能力

  教学中,注重学生的动脑思考、观察,让学生在自主的探究学习中表达自己的想法,通过一些特殊的例子,引导学生用数学的语言总结概括一些概念,逐步形成从特殊到一般的归纳推理能力。

【《倍数和因数》教学反思】相关文章:

倍数和因数教学反思10-17

因数和倍数教学反思04-11

因数和倍数教学反思(精选25篇)03-01

因数和倍数教学反思15篇04-18

《因数和倍数》的说课稿01-09

五年级下册因数和倍数教学反思04-04

《因数和倍数》的说课稿6篇01-09

《因数与倍数》说课稿12-22

倍数特征教学反思03-16